Another characterization of provably recursive functions

Evgeny Makarov
emakarov@gmail.com

Abstract. A new characterization of provably recursive functions of first-order arithmetic is described. Its main feature is using only terms consisting of 0, the successor S and variables in the quantifier rules, namely, universal elimination and existential introduction.

1 Introduction

This paper presents a new characterization of provably recursive functions of first-order arithmetic. We consider functions defined by sets of equations. The equations can be completely arbitrary, not necessarily defining primitive recursive, or even total, functions. The main result states that a function is provably recursive iff its totality is provable (using natural deduction) from the defining set of equations, with one restriction: only terms consisting of 0, the successor S and variables can be used in the inference rules dealing with quantifiers, namely universal elimination and existential introduction.

A deduction system with such restrictions can be considered as a way of reasoning about non-denoting terms. A set of equations \(P \) can define non-total functions over natural numbers (for precise definitions see Sect. 2) and a deduction system with regular quantifier rules has quantified variables ranging over all, not necessarily denoting, terms. For example, a formula \(\forall x \exists y \ f(x) = y \) is trivially provable in a regular system regardless of the definition of \(f \): we start by \(f(x) = f(x) \), introduce the existential quantifier to get \(\exists y \ f(x) = y \) and the universal quantifier to get \(\forall x \exists y \ f(x) = y \). In contrast, having the restriction given above makes quantifiers range over terms denoting natural numbers. The result is that the formula \(\forall x \exists y \ f(x) = y \) is no longer trivially provable because existential introduction with the term \(f(x) \) is not allowed in general. Moreover, its provability implies that the totality of \(f \) is provable in first-order arithmetic, i.e., that \(f \) is provably recursive, as the main result shows. Thus, the deductive power of our system is similar to the one of the standard Peano Arithmetic.

Our presentation is heavily influenced by [2], where another framework for reasoning about non-denoting terms, called intrinsic theory, is defined. The intrinsic theory of natural numbers has a unary predicate symbol \(N \) which is supposed to mean that its argument is a natural number. Intrinsic theory has no restriction on the quantifier rules. In effect, quantifiers in our system are equivalent to quantifiers relativized to \(N \) in intrinsic theory. This fact is used to prove one direction of our main result. The other direction is also proved following
the reasoning of a similar statement in [2], but without a reference to intrinsic
typeeory.

2 Definitions

Let \(P \) be a set of first-order equations. Let \(\mathcal{L} \) be the language of \(P \) plus a constant
0 and a unary functional symbol \(S \) (if they are not already used in \(P \)). The theory
\(\mathbf{A}[P] \) is a first-order theory with equality in the language \(\mathcal{L} \). The axioms of \(\mathbf{A}[P] \)
are the universal closures of the equations in \(P \), denoted by \(\forall P \), the separation
axioms \(\forall x S(x) \neq 0 \) and \(\forall x, y S(x) = S(y) \rightarrow x = y \), and induction

\[A[0] \rightarrow \forall x (A[x] \rightarrow A[S(x)]) \rightarrow \forall x A[x] \]

for all formulas \(A \) in \(\mathcal{L} \). The inference rules are the usual rules of classical natural
deduction (see, e.g., [3]) plus the rules of equality:

\[
\begin{align*}
A[t] & \quad t = s \\
\hline
A[s] & \\
\end{align*}
\]

\[t = t \]

for all formulas \(A \) and terms \(t, s \) in \(\mathcal{L} \) (\(A[s] \) is obtained from \(A[t] \) by replacing
some occurrences of \(t \) by \(s \)). The natural deduction rules dealing with quantifiers
are shown in Fig. 1. It is easy to see that the rules of equality make it a congruence.
For example, let \(\mathbf{AM} \) be the usual axioms for addition and multiplication
and let \(\mathbf{PR} \) be the set of standard defining equations for all primitive recursive
functions. Then \(\mathbf{A}[\mathbf{AM}] \) is Peano Arithmetic and \(\mathbf{A}[\mathbf{PR}] \) is Peano Arithmetic
with all primitive recursive functional symbols.

\[
\begin{align*}
\frac{A[y]}{\forall x A[x]} \quad (\forall I) & \quad \frac{\forall x A[x]}{A[t]} \quad (\forall E) \\
y \text{ is not free in open assumptions} & \quad t \text{ is free for } x \text{ in } A
\end{align*}
\]

\[
\begin{align*}
\frac{A[t]}{\exists x A[x]} \quad (\exists I) & \quad \frac{\exists x A[x]}{C} \quad (\exists E) \\
t \text{ is free for } x \text{ in } A & \quad y \text{ is not free in } C
\end{align*}
\]

Fig. 1. Quantifier rules of natural deduction

A \textit{program} is a pair \((P, f)\) consisting of a set of equations \(P \) and a functional
symbol \(f \) occurring in \(P \). (When \(f \) is clear from the context or is irrelevant, we
will write \(P \) instead of \((P, f)\).)
We use programs to define functions using an analog of Herbrand-Gödel computability (see [1, 2]). Given a program \(P \), we write \(P \vdash E \) if \(E \) is an equation derivable from \(P \) in equational logic. The rules of equational logic are the following:

1. \(P \vdash E \) for every \(E \in P \);
2. \(P \vdash t = t \) for every term \(t \);
3. if \(P \vdash E[x] \), then \(P \vdash E[t] \) for every term \(t \) and a variable \(x \);
4. if \(P \vdash s[t] = r[t] \) and \(P \vdash t = t' \), then \(P \vdash s[t'] = r[t'] \).

The relation computed by \((P, f) \) is \(\{ (\bar{n}, m) \mid P \vdash f(\bar{n}) = m \} \) (as usual, \(\bar{n} \) is a numeral for a number \(n \), consisting of \(n \) occurrences of \(S \) applied to \(0 \)). This relation does not have to be a function. Let us call \(P \) coherent if \(P \nvdash \bar{m} = \bar{n} \) for two distinct numerals \(\bar{m} \) and \(\bar{n} \). It is easy to see that the relation computed by a coherent program is a partial function.

However, even for a coherent program \(P \) the theory \(A[P] \) can be inconsistent because of the separation axioms. This is the case, for example, for \(P = \{ f(g(0)) = S(g(0)), f(x) = g(0) \} \) with fresh functional symbols \(f \) and \(g \). Call a program \(P \) strongly coherent if \(A[P] \) is consistent. It is clear that if a program is strongly coherent, then it is coherent.

Later it will be important that a program containing a functional symbol \(f \) corresponding to a primitive recursive function \(f \) also contains all defining equations for \(f \). Programs that satisfy this property are called full.

A term \(t \) is called function-free if \(t \) consists of \(0, S \) and variables only. A term \(t \) is called primitive recursive if \(t \) is in the language of PR. If \(T \) is a theory, then a formula \(A \) is called provable with function-free terms (respectively, provable with primitive recursive terms) in \(T \) if there is a classical natural deduction derivation of \(A \) from \(T \) where the eigenterms of the rules of universal elimination and existential introduction (i.e., terms \(t \) in the rules \((\forall E) \) and \((\exists I) \) in Fig. 1) are function-free (respectively, primitive recursive). Formulas provable with function-free (primitive recursive) terms in \(T \) are also called ff-provable (pr-provable) in \(T \), and this is denoted \(T \nvdash A \) \((T \nvdash A) \). More generally, if there is a natural deduction derivation in \(T \) of a formula \(A \) from assumptions \(\Gamma \) with the above restrictions on quantifiers, this is denoted by \(T \nvdash \Gamma \Rightarrow A \) or \(T \nvdash \Gamma \Rightarrow A \).

A function \(f \) is called ff-provable if \(f \) is computed by a strongly coherent full program \((P, f) \) and \(A[P] \nvdash \forall x \exists y f(x) = y \), and similarly for pr-provable.

3 Provable recursive functions are ff-provable

We choose the following definition of provably recursive functions of a theory \(T \): \(f \) is called provably recursive if \(f(x) = h(\mu y g(x, y) = 0) \) where \(\mu \) denotes the minimization operator, \(g \) and \(h \) are primitive recursive and \(T \vdash \forall x \exists y g(x, y) = 0 \).

The proof of the claim that every provably recursive function is ff-provable uses several lemmas.

Lemma 1. Suppose \(f \) is a primitive recursive function and \(f \) is the corresponding functional symbol from PR. Then \(A[PR] \nvdash \forall x \exists y f(x) = y \).
Proof. By induction on the construction of \(f \). If \(f \) is one of the base functions, i.e., zero, addition of one or a projection, then the claim is obvious. (Note that here we use the fact that \(S \) can appear in the quantifier rules’ eigenterms.) Suppose \(f \) is defined by composition using the equation
\[
f(x) = h(g_1(x), \ldots, g_k(x))
\]
and suppose that the formulas \(\forall x \exists y, g_i(x) = y_i (i = 1, \ldots, k) \) and \(\forall y \exists u h(y) = u \) are \(\text{ff-provable} \) in \(\mathbf{A}[PR] \). For \(k = 1 \), a derivation for \(f \) is shown in Fig. 2(a).

Suppose \(f \) is defined by primitive recurrence using equations
\[
f(x, 0) = g(x) \\
f(x, S(y)) = h(x, y, f(x, y))
\]
and suppose the formulas \(\forall x \exists u g(x) = u \) and \(\forall x, y, p \exists v h(x, y, p) = v \) are \(\text{ff-provable} \) in \(\mathbf{A}[PR] \). The formula \(\forall y \exists z f(x, y) = z \) is proved using induction on \(y \). The base case is
\[
\begin{align*}
\forall x f(x, 0) &= g(x) \\
\forall x g(x) &= g(x) \\
\end{align*}
\]
and the induction step is shown in Fig. 2(b).

\[\square\]

Lemma 2. For every primitive recursive term \(t[x] \), \(\mathbf{A}[PR] \vdash \forall x \exists y t[x] = y \).

Proof. By induction on \(t \), using Lemma 1 in the induction step. \[\square\]

Lemma 3. For any formula \(A \), if \(\mathbf{A}[PR] \vdash A \), then \(\mathbf{A}[PR] \vdash A \).

Proof. By induction on the derivation. The only non-trivial cases are \((\forall E)\) and \((\exists I)\).

Suppose \(A[t[y]] \) is derived from \(\forall x A[x] \). Since \(t[y] \) is a primitive recursive term, \(\mathbf{A}[PR] \vdash \forall y \exists z t[y] = z \) by Lemma 2. Then the following is the derivation of \(A[t[y]] \).

\[
\begin{align*}
\forall y \exists z t[y] &= z \\
\exists z t[y] &= z \\
A[t[y]] &= A[z] \\
\end{align*}
\]

Suppose \(\exists x A[x] \) is derived from \(A[t[y]] \). As before, \(\mathbf{A}[PR] \vdash \forall y \exists z t[y] = z \). Then the following is the derivation of \(\exists x A[x] \).

\[
\begin{align*}
\forall y \exists z t[y] &= z \\
\exists z t[y] &= z \\
\exists x A[x] &= A[z] \\
\end{align*}
\]
∀x f(x) = h(g(x))
\frac{f(x) = h(g(x))}{h(y) = y}
\frac{g_1(x) = y}{f(x) = h(y)}
\frac{h(y) = y}{\forall \exists y g_1(x) = y}
\frac{f(x) = h(y)}{\exists f(x) = z}
\frac{\exists f(x) = z}{\forall \exists f(x) = z}

\text{Fig. 2(a).}

\forall x, y f(x, Sy) = h(x, y, f(x, y))
\frac{f(x, Sy) = h(x, y, f(x, y))}{h(x, y, p) = v}
\frac{f(x, y, p) = v}{\exists z f(x, y) = z}
\frac{\exists z f(x, y) = z}{\exists z f(x, Sy) = z}
\frac{\exists z f(x, Sy) = z}{\forall y (\exists f(x, y) = z \rightarrow \exists z f(x, Sy) = z)}

\text{Fig. 2(b).}

\forall x, y f(x) = h(k(g(x, y), x, y))
\frac{f(x) = h(k(g(x, y), x, y))}{g(x, y) = 0}
\frac{g(x, y) = 0}{\forall x, y k(0, x, y) = y}
\frac{\forall x, y k(0, x, y) = y}{h(y) = y}
\frac{h(y) = y}{\forall x, \exists y g'(x, y) = 0}
\frac{\exists y g'(x, y) = 0}{\exists z f(x) = z}
\frac{\exists z f(x) = z}{\forall \exists z f(x) = z}

\text{Fig. 3.}
Theorem 1. All provably recursive functions of $A[PR]$ are ff-provable.

Proof. Suppose $f(x) = h(\mu y g(x, y) = 0)$ and $A[PR] \vdash \forall x \exists y g(x, y) = 0$. We would like to change g so that for each x it takes 0 for exactly one y, so we define

$$g'(x, y) = g(x, y) + \sum_{z < y} s(g(x, z)),$$

where $s(0) = 1$ and $s(x) = 0$ for $x \neq 0$. It is straightforward to see that $A[PR] \vdash \forall x \exists y g'(x, y) = 0$ and that $f(x) = h(\mu y g'(x, y) = 0)$.

By Lemma 3, $A[PR] \vdash \forall x \exists y g'(x, y) = 0$. Also, by Lemma 1, $A[PR] \not\vdash \forall y \exists y h(y) = u$. Let P be the minimal full program containing equalities from PR for all primitive recursive functional symbols used in these derivations, plus the following equalities.

$$f(x) = h(k(g'(x, y), x, y))$$
$$k(0, x, y) = y$$

A derivation of $\forall x \exists z f(x) = z$ in $A[P]$ is shown in Fig. 3.

It is left to show that P is strongly coherent and computes f. If f is interpreted by f and k is interpreted by the total function

$$k(z, x, u) = \begin{cases} u & \text{if } z = 0, \\ \mu y g(x, y) = 0 & \text{otherwise} \end{cases}$$

then P is true in the standard model of natural numbers; therefore, $A[P]$ is consistent. Further, for every m, n, if $f(m) = n$ then $P \not\vdash f(\overline{m}) = \overline{n}$. On the other hand, if $f(m) \neq n$, then $P \not\vdash f(\overline{m}) = \overline{n}$ because f is total and P is strongly coherent.

4 Functions that are ff-provable are provably recursive

To remind, under the assumption $A[P] \not\vdash \forall x \exists y f(x) = y$ we have to prove that f is provably recursive according to the definition of Sect. 3, not that $A[P] \vdash \forall x \exists y f(x) = y$, which is trivial. We will prove this statement indirectly, using intrinsic theories introduced by Leivant [2]. An intrinsic theory is a framework for reasoning about inductively generated data.

The intrinsic theory of natural numbers, IT(\mathbb{N}), is a first-order theory with equality whose vocabulary has functional symbols 0, S and a unary predicate symbol \mathbb{N}. The additional inference rules are:

$$\frac{N(0) \quad N(t) \quad A[0]}{\forall x (A[x] \rightarrow A[Sx])}$$

Theorem 1. All provably recursive functions of $A[PR]$ are ff-provable.

Proof. Suppose $f(x) = h(\mu y g(x, y) = 0)$ and $A[PR] \vdash \forall x \exists y g(x, y) = 0$. We would like to change g so that for each x it takes 0 for exactly one y, so we define

$$g'(x, y) = g(x, y) + \sum_{z < y} s(g(x, z)),$$

where $s(0) = 1$ and $s(x) = 0$ for $x \neq 0$. It is straightforward to see that $A[PR] \vdash \forall x \exists y g'(x, y) = 0$ and that $f(x) = h(\mu y g'(x, y) = 0)$.

By Lemma 3, $A[PR] \vdash \forall x \exists y g'(x, y) = 0$. Also, by Lemma 1, $A[PR] \not\vdash \forall y \exists y h(y) = u$. Let P be the minimal full program containing equalities from PR for all primitive recursive functional symbols used in these derivations, plus the following equalities.

$$f(x) = h(k(g'(x, y), x, y))$$
$$k(0, x, y) = y$$

A derivation of $\forall x \exists z f(x) = z$ in $A[P]$ is shown in Fig. 3.

It is left to show that P is strongly coherent and computes f. If f is interpreted by f and k is interpreted by the total function

$$k(z, x, u) = \begin{cases} u & \text{if } z = 0, \\ \mu y g(x, y) = 0 & \text{otherwise} \end{cases}$$

then P is true in the standard model of natural numbers; therefore, $A[P]$ is consistent. Further, for every m, n, if $f(m) = n$ then $P \not\vdash f(\overline{m}) = \overline{n}$. On the other hand, if $f(m) \neq n$, then $P \not\vdash f(\overline{m}) = \overline{n}$ because f is total and P is strongly coherent.

4 Functions that are ff-provable are provably recursive

To remind, under the assumption $A[P] \not\vdash \forall x \exists y f(x) = y$ we have to prove that f is provably recursive according to the definition of Sect. 3, not that $A[P] \vdash \forall x \exists y f(x) = y$, which is trivial. We will prove this statement indirectly, using intrinsic theories introduced by Leivant [2]. An intrinsic theory is a framework for reasoning about inductively generated data.

The intrinsic theory of natural numbers, IT(\mathbb{N}), is a first-order theory with equality whose vocabulary has functional symbols 0, S and a unary predicate symbol \mathbb{N}. The additional inference rules are:

$$\frac{N(0) \quad N(t) \quad A[0]}{\forall x (A[x] \rightarrow A[Sx])}$$
The variant of intrinsic theory that we are using, called discrete intrinsic theory and denoted by $\mathbf{IT}(\mathbb{N})$ in [2], also includes the separation axioms. Note that $\mathbf{IT}(\mathbb{N})$ uses regular first-order quantifier rules.

A function f is called provable in $\mathbf{IT}(\mathbb{N})$ if it is computed by a strongly coherent program (P, f) and $\mathbf{IT}(\mathbb{N}), \forall P \vdash \forall x (\mathbb{N}(x) \to \mathbb{N}(f(x)))$.

The following theorem is proved in [2].

Theorem 2. A function is provably recursive in $\mathbf{A}[\mathbf{PR}]$ iff it is provable in $\mathbf{IT}(\mathbb{N})$.

Thus, it is enough to show that ff-provable functions are provable in $\mathbf{IT}(\mathbb{N})$. However, we can show a stronger result, namely, that pr-provable functions are provable in $\mathbf{IT}(\mathbb{N})$.

Let us introduce some notation. If A is a formula, then A^N denotes A with all quantifiers relativized to \mathbb{N}, i.e., having all subformulas of the form $\forall x B$ replaced by $\forall x (\mathbb{N}(x) \to B)$ and all subformulas of the form $\exists x B$ replaced by $\exists x (\mathbb{N}(x) \land B)$. If Γ is a set of formulas, then $\Gamma^N = \{A^N \mid A \in \Gamma\}$. If $x = x_1, \ldots, x_n$, then $\mathbb{N}(x)$ denotes $\mathbb{N}(x_1) \land \ldots \land \mathbb{N}(x_n)$.

Lemma 4. Let P be a full program and let $t[x]$ be a primitive recursive term in the language of P. Then $\mathbf{IT}(\mathbb{N}), \forall P \vdash \mathbb{N}(x) \Rightarrow \mathbb{N}(t[x])$.

Proof. The proof is similar to Lemma 2. For example, if $t[x]$ is $f(s[x])$ where f is a symbol for a function $f(x, y)$ defined by primitive recurrence on y, then one needs to use induction for the formula $\mathbb{N}(y) \land \mathbb{N}(f(x, y))$. The fullness of P is necessary to ensure that the induction hypothesis is true of all subterms of t. \hfill \square

Lemma 5. Let P be a full program. Suppose that $\Gamma \cup \{A\}$ is a set of formulas in the language of P whose free variables are among x. If $\mathbf{A}[P] \not\vdash \Gamma \Rightarrow A$ then $\mathbf{IT}(\mathbb{N}), \forall P \vdash \mathbb{N}(x), \Gamma^N \Rightarrow A^N$.

Proof. The proof is by induction on the derivation. If A is an axiom of $\mathbf{A}[P]$ other than induction, then $\mathbf{IT}(\mathbb{N}), \forall P \vdash A$ and $A \vdash A^N$. The only other cases that need attention are those dealing with quantifiers and induction.

If $A[t]$ is derived from $\forall y A[y]$, then by induction hypothesis, $\forall y (\mathbb{N}(y) \to A^N[y])$ is derivable. Since t is a primitive recursive term in the language of P, $\mathbb{N}(t)$ is derivable by Lemma 4, so $A^N[t]$ is derivable as well. The case of $(\exists I)$ is similar. The cases of $(\forall I)$ and $(\exists E)$ are also straightforward.

The relativized version of the induction axiom is

$$B^N[0] \to \forall y (\mathbb{N}(y) \to B^N[y] \to B^N[Sy]) \to \forall y (\mathbb{N}(y) \to B^N[y]).$$

It is proved by induction in $\mathbf{IT}(\mathbb{N})$ for the formula $\mathbb{N}(y) \land B^N[y]$. \hfill \square

Theorem 3. All pr-provable functions are provably recursive.

Proof. Let f be computed by a strongly coherent full program (P, f) and let $\mathbf{A}[P] \not\vdash \forall x \exists y f(x) = y$. Then by Lemma 5, $\mathbf{IT}(\mathbb{N}), \forall P \vdash \forall x (\mathbb{N}(x) \to \exists y \mathbb{N}(y) \land f(x) = y)$. This implies that $\mathbf{IT}(\mathbb{N}), \forall P \vdash \forall x (\mathbb{N}(x) \to \mathbb{N}(f(x)))$, so by Theorem 2, f is provably recursive. \hfill \square
Acknowledgments

I am grateful to Daniel Leivant and Lev Beklemishev for constructive discussion.

References